Ratios
sine x = (side opposite x)/hypotenuse
cosine x = (side adjacent x)/hypotenuse
tangent x = (side opposite x)/(side adjacent x)
In the figure below, sin A = a/c, cosine A = b/c, and tangent A = a/b.

Reciprocal Ratios
cotangent x = 1/tan x = (adjacent side)/(opposite side)
secant x = 1/cos x = (hypotenuse)/(adjacent side)
cosecant x = 1/sin x = (hypotenuse)/(opposite side)
Cofunctions
sin x = cos (90o - x)
tan x = cot (90o - x)
sec x = csc (90o - x)
cos x = sin (90o - x)
cot x = tan (90o - x)
csc x = sec (90o - x)
Example:
1. Problem: Find the function value of
cot 60o.
Solution: Use the cotangent's cofunction
identity to rewrite the problem.
tan (90o - 60o)
tan 30o
The tangent of 30o is
(SQRT(3))/3
No comments:
Post a Comment